International Geology Review | 2019

Petrogenesis and geological significance of charnockite in the Yinshan Block of North China Craton

 
 
 
 
 
 

Abstract


ABSTRACT A comparative study was performed on the petrography, geochemistry and geochronology of charnockite and granulite in the Xiwulanbulang (XWLBL) area, northern margin of the North China Craton, NW China. Inclusions within garnet in the charnockite are used to identify the mineral assemblage in the granulite during peak metamorphism. The formation of charnockite is attributed to the anatectic of the protolith, as a result of granulite-facies metamorphism during the same tectono-thermal event. Anatexis occurred mainly during the post-peak isothermal depressurization stage (granulite and charnockite yield peak P–T conditions of 800–850°C and 1.0–1.2 GPa, and 750°C and 0.9–1.0 GPa, respectively), as inferred from the metamorphic evolution and P–T conditions derived from analyses of metamorphic minerals by electron microprobe (EMP). The garnets in the charnockite were a residual or peritectic mineral facies during anatexis, and the charnockite was the product of crystallization from melt with abundant residual minerals. Charnockite has similar geochemical characteristics to felsic granulite, although it differs in having 1) an uneven distribution of major and trace elements; 2) strong depletions in the large-ion lithophile element Cs, the heat-producing elements U and Th, and the high-field-strength elements Nb, Ta, P and Ti; and 3) both Eu-enriched and Eu-depleted patterns that are characteristic of granite formed by largely in situ anatectic. The geochemical data indicate that the XWLBL charnockite formed in a subduction-related volcanic arc setting. On the basis of our results, combined with geological data on the Neoarchean structural evolution of the Yinshan Block and εHf(t) values of 1.60–7.81, we propose that the anatectic of charnockite was related to slab break-off during mid-ocean-ridge subduction, which resulted in the ascent of mantle magma through the slab window.

Volume 61
Pages 895 - 913
DOI 10.1080/00206814.2019.1570874
Language English
Journal International Geology Review

Full Text