International Geology Review | 2019

Petrogenesis of the Piqiang mafic-ultramafic layered intrusion and associated Fe-Ti-V oxide deposit in Tarim Large Igneous Province, NW China

 
 
 

Abstract


ABSTRACT The Piqiang intrusion is one of the two important mafic-ultramafic layered intrusions that host giant Fe-Ti-V oxide deposits in the Permian Tarim Large Igneous Province, NW China. The intrusion mainly consists of gabbro, anorthosite and minor plagioclase-bearing clinopyroxenite in the marginal zone. Disseminated to massive Fe-Ti oxide ores occur as layers and lenses within the gabbro. SHRIMP zircon U-Pb results from both a gabbro from the Piqiang intrusion and a granite from the surrounding granitic dyke yield ages of ~270 Ma. Geochemically, the Piqiang silicate rocks are enriched in light rare earth elements (LREE) and large ion lithophile elements (LILE), moderately depleted in high field strength elements (HFSE), and have a limited range of Sr-Nd-Hf isotopic compositions. The similar mineralogy, mineral compositions, and trace element characteristics of the layered units suggest that all the rocks are co-magmatic. The parental magma is Fe-Ti-rich and is akin to the most primitive diabasic dyke which is associated with the Piqiang intrusion. Partial melting of the Tarim mantle plume with involvement of a subduction-metasomatized lithospheric mantle source best explains the geochemistry and petrogenesis of the parental magmas of the Piqiang intrusion. We propose that the lithospheric mantle source may have been metasomatized by subduction-related materials and the metasomatic enrichment of this source region which may be correlated with oceanic sediment recycling during southward subduction of the South Tianshan oceanic slab during the Early-Middle Paleozoic. Crystal settling and mechanical sorting is the predominant process responsible for the formation of the massive Fe-Ti oxide ores in the Piqiang intrusion. Central to ore formation is a combination of the protracted differentiation history of a Fe-Ti-enriched parental magma and the later addition of external H2O from the country rocks to the slowly cooling magma chamber.

Volume 61
Pages 2249 - 2275
DOI 10.1080/00206814.2019.1584867
Language English
Journal International Geology Review

Full Text