International Geology Review | 2019

Abnormal disappearance of Duoqing Co lake between November 2015 and April 2016, due to far-field aseismic creeping of the southern Yadong-Gulu rift of Tibet, triggered by the 2015 Ms 8.1 Nepal earthquake

 
 
 
 
 
 

Abstract


ABSTRACT Duoqing Co is a 60 km2 outflow lake in the N-trending Pagri graben, located at the southern end of the Yadong-Gulu rift in Tibet. The water in this lake suddenly disappeared between November 2015 and April 2016, closely following the Ms 8.1 (Mw 7.8) Nepal earthquake in April 2015. Both, geomorphological and remote sensing data indicate the existence of blind faults striking NNE along the east boundary of Duoqing Co lake. There were also several nearly NE-trending extensional cracks preserved in the dried lakebed, apparently formed in response to creeping deformation of the underlying rock. Based on field studies and analysis of meteorological and remote sensing data, it is suggested that this phenomenon cannot be explained by evaporation linked to climate change nor can it be related to human activity. Instead, it is considered that the lake water drained through the extensional cracks formed in the lakebed as it responded to the far-field effects of the 2015 Nepal earthquake. It is proposed that a shift in regional tectonics occurred as a result of the Nepal earthquake, causing a sharp increase in stress accumulation along the seismically locked Bhutan–Sikkim zone on the Main Himalayan Thrust (MHT) fault, which was accommodated by the extension of the Pagri graben in the southern Yadong-Gulu rift. It is believed that the crust may have reached a critical stress-state that resulted in strain hardening and brittle failure throughout the region along the Bhutan–Sikkim segment of the MHT. If so, considering the high potential for tectonic activity along the segment of the MHT, it may be worth paying attention to deformational changes and potential geomorphological precursors that might appear in the seismically locked Bhutan–Sikkim gap to predict future earthquakes.

Volume 61
Pages 2313 - 2327
DOI 10.1080/00206814.2019.1594410
Language English
Journal International Geology Review

Full Text