International Journal of Systems Science | 2019

Distributed prescribed performance control for consensus output tracking of nonlinear semi-strict feedback systems using finite-time disturbance observers

 

Abstract


ABSTRACT The distributed consensus output tracking problem is dealt with for a class of nonlinear semi-strict feedback systems in the presence of mismatched nonlinear uncertainties, external disturbances and uncertain nonlinear virtual control coefficients of the subsystems. The systems are under a directed communication graph, where the leader node is the root. The controller is designed in a backstepping manner, and the dynamic surface technique is adopted to avoid direct differentiation. At each step of virtual controller design, a prescribed performance controller is constructed to achieve prescribed transient performance so that the system states remain in the feasible domain. Then each virtual controller is enhanced by a finite-time disturbance observer which estimates the disturbance term in a finite-time. The properties of the control system are analysed theoretically. It is clarified that the prescribed performance control technique ensures that the system signals stay in the feasible domain, whereas sufficiently small ultimate control errors can be achieved by the finite-time disturbance observers. Finally, the performance of the proposed methods is confirmed by numerical studies.

Volume 50
Pages 1005 - 989
DOI 10.1080/00207721.2019.1586006
Language English
Journal International Journal of Systems Science

Full Text