Ultrastructural Pathology | 2021

Could Vitamin C Protect Against Mercuric Chloride Induced Lung Toxicity In The Offspring Rat: A Histological And Immunohistochemical Study

 
 

Abstract


ABSTRACT Mercury (Hg) is one of the most toxic heavy metals and widely utilized in various industries. Hg exposure causes serious health impacts through unfavorable pathological and biochemical effects. We aimed to assess the effect of mercuric chloride (HgCl2) prenatal exposure on the lung development and probable prophylactic effect of vitamin C. The 30 pregnant rats were used in this work and divided randomly into 3 equal groups: Group Ӏ given distilled water, Group ӀӀ given HgCl2 at dose of 4 mg/ BW/day and Group ӀӀӀ given HgCl2 and Vitamin C at dose of 200 mg/kg BW/day. The pups of each group at birth were collected, counted and weighted then lung specimens were extracted, weighted, anaesthetized and processed for the light, electron microscopic and immunohistochemical studies. Also, morphometric studies were performed. We found that prenatal HgCl2 exposure caused collapse of alveoli, thick interalveolar septa, degenerated type Ӏ and type Ӏ pneumocytes, extensive extravasation of RBCs, extensive collagen fibers deposition, positive iNOS immunoreaction and significant decrease in the body and lung weights. Vitamin C concomitant administration partially reversed HgCl2 induced lung degeneration. We concluded that prenatal HgCl2 exposure caused lung damage and vitamin C had protective effects against HgCl2 indued pulmonary toxicity.

Volume 45
Pages 197 - 211
DOI 10.1080/01913123.2021.1954118
Language English
Journal Ultrastructural Pathology

Full Text