Journal of Biomolecular Structure and Dynamics | 2021

Amygdalin as multi-target anticancer drug against targets of cell division cycle: double docking and molecular dynamics simulation

 
 

Abstract


Abstract Cell-division protein kinases (CDKs) are gorgeous examples of targets for the helpful treatment of cancer by using multi-target inhibitors. Specifically, targeting cell-division protein kinase1/cyclin B (CDK1/Cyclin B), cell-division protein kinase 2/cyclin A (CDK2/Cyclin A) and cell-division protein kinase 4/cyclin D1 (CDK4/Cyclin D1) are considered a safe strategy to over the toxicity complications which are emerging from low specificity. In this work, we conducted the double docking and molecular dynamics to explicate the effect of amygdalin upon conformational modifications of selected targets. Moreover, the principal component analysis (PCA) was employed to inspect the effect of amygdalin on the fundamental motions of the each protein as target. Docking results illustrated that the binding free energies of amygdalin (AMY) to CDK1/Cyclin B, CDK 2/Cyclin A and CDK 4/Cyclin D1 were to be −9.41, −9.02 and −10.6\u2009kcal/mol, respectively. The PCA results disclosed that binding of the AMY minimized the fundamental dynamics of CDK1/Cyclin B and CDK2/Cyclin A. The obtained results can give an insight into inhibitory activity of amygdalin that could help in designing of potential inhibitors. In the other word, it can be used AMY to inhibit other mechanisms and/or hallmarks of cancer. Communicated by Ramaswamy H. Sarma

Volume 39
Pages 1965 - 1974
DOI 10.1080/07391102.2020.1742792
Language English
Journal Journal of Biomolecular Structure and Dynamics

Full Text