Journal of biomolecular structure & dynamics | 2021

Juvenile hormone mimics with phenyl ether and amide functionality to be insect growth regulators (IGRs): synthesis, characterization, computational and biological study.

 
 

Abstract


A series of substituted phenyl ethers derivatives as juvenile hormone (JH) mimics (V1-V8) have been synthesized. Substituted phenoxyacetic acid and amino acid ethyl ester hydrochloride were prepared using NaOH, SOCl2. DCC method has been used for amide linkage. The structure of prepared compounds has been confirmed by Fourier Transform Infra-Red (FT-IR), Electrospray ionization-Mass spectrometry (ESI-MS), Proton and Carbon-13 nuclear magnetic resonance (1H-NMR, 13C-NMR) spectroscopic techniques. Biological efficacy of synthesized analogs has been carried out under laboratory conditions. Galleria mellonella (honey bee pest) has been chosen as testing insect. Juvenile hormone (JH) activity of synthesized compounds has been tested at different concentrations and compared with the standard juvenile hormone analogs (JHAs) pyriproxyfen (M1) and fenoxycarb (M2) against the fifth larval instar of G. mellonella. Compound ethyl 2-[2-(4-methylphenoxy)aminoacetyl]-3-phenyl-propanoate (V6) exhibited better activity among all the synthesized compounds (V1-V8) with LC50 and LC90 values of 0.11\u2009mg/mL and 0.56\u2009mg/mL respectively. Compounds showed insect growth regulating (IGR) activity at lower concentrations. In silico screening of all synthesized compounds with the W-cavity of juvenile hormone-binding protein (JHBP) of insect G. mellonella has been carried out. Chemical reactivity of synthesized series has been studied using DFT/B3LYP/6-311\u2009+\u2009G(d,2p) method. Non-toxic behavior of molecules has also been observed from ADMET (Absorption, Distribution, Metabolism, Excretion, and Toxicity) study using discovery studio client 3.0.Communicated by Ramaswamy H. Sarma.

Volume None
Pages \n 1-19\n
DOI 10.1080/07391102.2021.1985614
Language English
Journal Journal of biomolecular structure & dynamics

Full Text