Connection Science | 2019

Adaptive learning on mobile network traffic data

 
 
 
 

Abstract


ABSTRACT Machine learning based mobile traffic classification has become a popular topic in recent years. As mobile traffic data is dynamic in nature, the static model has become ineffective for the task of classifying future traffic. This is known as the concept drift problem in data streams. To this end, this paper presents an adaptive mobile traffic classification method. Specifically, a method based on the fuzzy competence model is devised to detect concept drift, and a dynamic learning method is presented to update the classification model, so as to adapt to an ever-changing environment at an appropriate time. The concept drift detection method relies on the data distribution instead of the classification error rate. Furthermore, the weights of flow samples are dynamically updated and flow samples are resampled for training a new model when a concept drift is detected. Moreover, recently trained models are saved and used for classification in weighted voting. The weight of each model is updated according to the performance it obtains on the most recent flow samples. On mobile traffic data, experimental results show that our proposed method obtains lower classification error rate with less time consumption on updating models as compared to related methods designed for handling concept drift problems.

Volume 31
Pages 185 - 214
DOI 10.1080/09540091.2018.1512557
Language English
Journal Connection Science

Full Text