Expert Opinion on Drug Metabolism & Toxicology | 2021

Understanding thiopurine methyltransferase polymorphisms for the targeted treatment of hematologic malignancies

 
 
 
 

Abstract


ABSTRACT Introduction Thiopurine methyltransferase (TPMT) catalyzes the S-methylation of thiopurines (mercaptopurine (MP) and tioguanine (TG)), chemotherapeutic agents used in the treatment of acute lymphoblastic leukemia (ALL). Polymorphisms in TPMT gene encode diminished activity enzyme, enhancing accumulation of active metabolites, and partially explaining the inter-individual differences in patients’ clinical response. Areas covered This review gives an overview on TPMT gene and function, and discusses the pharmacogenomic implications of TPMT variants in the prevention of severe thiopurine-induced hematological toxicities and the less known implication on TG-induced sinusoidal obstruction syndrome. Additional genetic and non-genetic factors impairing TPMT activity are considered. Literature search was done in PubMed for English articles published since1990, and on PharmGKB. Expert opinion To titrate thiopurines safely and effectively, achieve the right degree of lymphotoxic effect and avoid excessive myelosuppression, the optimal management will combine a preemptive TPMT genotyping to establish a safe initial dose with a close phenotypic monitoring of TPMT activity and/or of active metabolites during long-term treatment. Compared to current ALL protocols, replacement of TG by MP during reinduction phase in TPMT heterozygotes and novel individualized TG regimens in maintenance for TPMT wild-type subjects could be investigated to improve outcomes while avoiding risk of severe hepatotoxicity.

Volume 17
Pages 1187 - 1198
DOI 10.1080/17425255.2021.1974398
Language English
Journal Expert Opinion on Drug Metabolism & Toxicology

Full Text