The Biological Bulletin | 2021

Development of the Accessory Nidamental Gland and Associated Bacterial Community in the Hawaiian Bobtail Squid, Euprymna scolopes

 
 
 

Abstract


The Hawaiian bobtail squid, Euprymna scolopes, has a female reproductive organ called the accessory nidamental gland that contains a symbiotic bacterial consortium. These bacteria are deposited from the accessory nidamental gland into the squid’s egg cases, where the consortium prevents microbial fouling. The symbiont community is environmentally transmitted and conserved across host populations, yet little is known about how the organ develops and is colonized by bacteria. In order to understand accessory nidamental gland development in E. scolopes, we characterized the gland during maturation by using histology and confocal and transmission electron microscopy. We found that an epithelial field formed first about four weeks after hatching, followed by the proliferation of numerous pores during what we hypothesize to be the initiation of bacterial recruitment (early development). Microscopy revealed that these pores were connected to ciliated invaginations that occasionally contained bacteria. During mid development, these epithelial fields expanded, and separate colonized tubules were observed below the epithelial layer that contained the pores and invaginations. During late development, the superficial epithelial fields appeared to regress as animals approached sexual maturity and were never observed in fully mature adults (about 2–3 months post-hatching), suggesting that they help facilitate bacterial colonization of the accessory nidamental gland. An analysis of 16S rRNA gene diversity in accessory nidamental glands from females of varying size showed that the bacterial community changed as the host approached sexual maturity, increasing in community evenness and shifting from a Verrucomicrobia-dominated to an Alphaproteobacteria-dominated consortium. Given the host’s relationship with the well-characterized light organ symbiont Vibrio fischeri, our work suggests that the accessory nidamental gland of E. scolopes may have similar mechanisms to recruit bacteria from the environment. Understanding the developmental and colonization processes of the accessory nidamental gland will expand the use of E. scolopes as a model organism for studying bacterial consortia in marine symbioses.

Volume 240
Pages 205 - 218
DOI 10.1086/713965
Language English
Journal The Biological Bulletin

Full Text