arXiv: Quantum Gases | 2019

Dynamics and Quantum correlations in Two independently driven Rydberg atoms with distinct laser fields

 
 
 

Abstract


We study the population dynamics in a two-atom setup in which each atom is driven independently by different light fields, but coupling the same Rydberg state. In particular, we look at how an offset in the Rabi frequencies between two atoms influences the dynamics. We find novel features such as amplifying the Rabi frequency of one atom, together with strong Rydberg-Rydberg interactions freezes the dynamics in the second atom. We characterize the Rydberg-biased freezing phenomenon in detail, with effective Hamiltonians obtained for various limits of the system parameters. In the absence of Rabi-offset, the doubly excited state population exhibits a Lorentzian profile as a function of interaction, whereas for very small offsets it shows splitting and thus peaks. Using an effective Hamiltonian as well as the perturbation theory for weak interactions, we show that the peak arises from a competition between Rabi-offset and Rydberg-Rydberg interactions when both are sufficiently small, together with the Rydberg blockade at large interactions. The effective Hamiltonians provide us with analytical results which are in an excellent agreement with full numerical solutions. Also, we analyze the growth and the dynamics of quantum correlations such as entanglement entropy and quantum discord for the coherent dynamics. We extend our studies to the dissipative case in which the spontaneous emission from the Rydberg state is taken into account and in particular, we look at the purity and quantum discord of the steady states. To conclude, our studies reveal that the local manipulation of an atom using Rabi-offset can be an ideal tool to control the quantum correlations and in general, quantum states of the composite two-qubit systems.

Volume None
Pages None
DOI 10.1088/1361-6455/ab32a2
Language English
Journal arXiv: Quantum Gases

Full Text