Journal of physics. Condensed matter : an Institute of Physics journal | 2019

Tuning spin filtering by anchoring groups in benzene derivative molecular junctions.

 
 
 

Abstract


One of important issues of molecular spintronics is the control and manipulation of charge transport and, in particular, its spin polarization in single molecule junctions. Using <i>ab</i> <i>initio</i> calculations, we explore spin-polarized electron transport across single benzene derivatives attached with six different anchoring groups (S, CH<sub>3</sub>S, COOH, CNH<sub>3</sub>NH, NC and NO<sub>2</sub>) to Ni(111) electrodes. We find that molecule-electrode coupling, conductance and spin polarization (SP) of electric current can be modified significantly by anchoring groups. In particular, a high spin polarization (SP > 80%) and a giant magnetoresistance (MR > 140%) can be achieved for NO<sub>2</sub> terminations and, more interestingly, SP can be further enhanced (up to 90%) by a small voltage. The S and CH<sub>3</sub>S systems, on the contrary, exhibit rather low SP while intermediate values are found for COOH and CNH<sub>3</sub>NH groups. The results are analyzed in detail and explained by orbital symmetry arguments, hybridization and spatial localization of frontier molecular orbitals. We hope that our comparative and systematic studies will provide a valuable quantitative information for future experimental measurements on that kind of systems and will be useful for designing high-performance spintronics devices.

Volume None
Pages None
DOI 10.1088/1361-648X/ab2846
Language English
Journal Journal of physics. Condensed matter : an Institute of Physics journal

Full Text