Journal of physics. Condensed matter : an Institute of Physics journal | 2019

Deterministically fabricated solid-state quantum-light sources.

 
 
 

Abstract


The controlled generation of non-classical states of light is a challenging task at the heart of quantum optics. Aside from the mere spirit of science, the related research is strongly driven by applications in photonic quantum technologies, including the fields of quantum communication, quantum computation, and quantum metrology. In this context, the realization of integrated solid-state-based quantum-light sources is of particular interest, due to the prospects for scalability and device integration. This topical review focuses on solid-state quantum-light sources which are fabricated in a deterministic fashion. In this framework we cover quantum emitters represented by semiconductor quantum dots, colour centres in diamond, and defect-/strain-centres in two-dimensional materials. First, we introduce the topic of quantum-light sources and non-classical light generation for applications in photonic quantum technologies, motivating the need for the development of scalable device technologies to push the field to real-world applications. In the second part, we summarize material systems hosting quantum emitters in the solid-state. The third part reviews deterministic fabrication techniques and comparatively discusses their advantages and disadvantages. The techniques are classified in bottom-up approaches, exploiting the site-controlled positioning of the quantum emitters themselves, and top-down approaches, allowing for the precise alignment of photonic microstructures to pre-selected quantum emitters. Special emphasis is put on the progress achieved in the development of in-situ techniques, which significantly pushed the performance of quantum-light sources towards applications. Additionally we discuss hybrid approaches, exploiting pick-and-place techniques or wafer-bonding. The fourth part presents state-of-the-art quantum-dot quantum-light sources based on the fabrication techniques presented in the previous sections, which feature engineered functionality and enhanced photon collection efficiency. The article closes by highlighting recent applications of deterministic solid-state-based quantum-light sources in the fields of quantum communication, quantum computing, and quantum metrology, and discussing future perspectives in the field of solid-state quantum-light sources.

Volume None
Pages None
DOI 10.1088/1361-648X/ab5e15
Language English
Journal Journal of physics. Condensed matter : an Institute of Physics journal

Full Text