arXiv: Statistical Mechanics | 2019

Coexistence of absolute negative mobility and anomalous diffusion

 
 
 

Abstract


Using extensive numerical studies we demonstrate that absolute negative mobility of a Brownian particle (i.e. the net motion into the direction opposite to a constant biasing force acting around zero bias) does coexist with anomalous diffusion. The latter is characterized in terms of a nonlinear scaling with time of the mean-square deviation of the particle position. Such anomalous diffusion covers coherent motion (i.e. the position dynamics x(t) approaches in evolving time a constant dispersion), ballistic diffusion, subdiffusion, superdiffusion and hyperdiffusion. In providing evidence for this coexistence we consider a paradigmatic model of an inertial Brownian particle moving in a one-dimensional symmetric periodic potential being driven by both an unbiased time-periodic force and a constant bias. This very setup allows for various sorts of different physical realizations.

Volume None
Pages None
DOI 10.1088/1367-2630/ab3764
Language English
Journal arXiv: Statistical Mechanics

Full Text