Journal of Semiconductors | 2019

A review of β-Ga2O3 single crystal defects, their effects on device performance and their formation mechanism

 
 
 
 
 
 

Abstract


As a wide-bandgap semiconductor (WBG), β-Ga2O3 is expected to be applied to power electronics and solar blind UV photodetectors. In this review, defects in β-Ga2O3 single crystals were summarized, including dislocations, voids, twin, and small defects. Their effects on device performance were discussed. Dislocations and their surrounding regions can act as paths for the leakage current of SBD in single crystals. However, not all voids lead to leakage current. There’s no strong evidence yet to show small defects affect the electrical properties. Doping impurity was definitely irrelated to the leakage current. Finally, the formation mechanism of the defects was analyzed. Most small defects were induced by mechanical damages. The screw dislocation originated from a subgrain boundary. The edge dislocation lying on a plane slightly tilted towards the (102) plane, the (101) being the possible slip plane. The voids defects like hollow nanopipes, PNPs, NSGs and line-shaped grooves may be caused by the condensation of excess oxygen vacancies, penetration of tiny bubbles or local meltback. The nucleation of twin lamellae occurred at the initial stage of shoulder part” during the crystal growth. These results are helpful in controlling the occurrence of crystal defects and improving the device performance.

Volume 40
Pages 11804
DOI 10.1088/1674-4926/40/1/011804
Language English
Journal Journal of Semiconductors

Full Text