Journal of Physics: Conference Series | 2021

Study on the Segmentation Method of Multi-Phase CT Liver Tumor Based on Dual Channel U-Nets

 
 
 
 

Abstract


As a common malignant tumor disease, hepatocellular carcinoma is the most common cancers in the world. The incidence of hepatocellular carcinoma in China is higher than that in the world. Therefore, it is very important for doctors to separate liver and tumor from CT images by means of computer-aided diagnosis and treatment. In this paper, a multiscale DC-CUNets network liver tumor segmentation method is proposed to enhance the fusion of multi-phase image features in CT, the scale of liver tumors, and the optimization of network training process. (1) A multistage CT liver tumor segmentation method based on two-channel cascaded U-Nets (DC-CUNets) is proposed. The liver was segmented using the first-order U-Net, and then the segmented area of interest of the liver was input into the second-order U-Net network to segment liver tumors. We designed two-channel U-Nets to learn the image characteristics of CT images in arterial and venous phases respectively, and to achieve two-channel feature fusion through feature cascade to improve the overall accuracy of liver tumor segmentation.(2) A multistage CT liver tumor segmentation method based on multiscale DC-CUNets was proposed. For the scale problem of liver tumors, we designed a two-layer multiscale void convolution module to obtain image features at different scales for large, medium and small tumors, and fuse the multiscale features at the output of the module. We have replaced the convolution layer of the fourth module in the second-order two-channel liver tumor segmentation U-Nets by the two-layer multiscale cavity convolution module to implement multiscale DC-CUNets.

Volume 1828
Pages None
DOI 10.1088/1742-6596/1828/1/012043
Language English
Journal Journal of Physics: Conference Series

Full Text