Journal of Physics: Photonics | 2021

Quantum nanostructures for plasmonics and high refractive index photonics

 

Abstract


Although plasmonics and high refractive index photonics have experienced very fast growth thanks to classical physics concepts, there is an increasing interest in harnessing quantum physics concepts for further pushing the frontiers of these fields. In this context, this perspective highlights the importance of some quantum nanostructures for building nanomaterials and metamaterials with enhanced plasmonic and high refractive index properties. Two types of nanostructures displaying quantum properties are considered: (a) quantum confined nanostructures consisting of noble metals or standard semiconductors, (b) nanostructures built from alternative materials whose dielectric function and optical properties are driven by (possibly tailored) giant interband electronic transitions. A special emphasis is made on the potential of this latter type of nanostructures for achieving outstanding effects for applications, such as ultrabroadband light harvesting, giant refractive index, coupling between dielectric, low-loss plasmonic and magnetic properties, compositionally or externally tuneable optical response. Possible future developments to the field are discussed.

Volume 3
Pages None
DOI 10.1088/2515-7647/abc92c
Language English
Journal Journal of Physics: Photonics

Full Text