Cannabis and cannabinoid research | 2021

Cannabidiol-Driven Alterations to Inflammatory Protein Landscape of Lipopolysaccharide-Activated Macrophages In Vitro May be Mediated by Autophagy and Oxidative Stress.

 
 
 

Abstract


Background: The nonpsychotropic phytocannabinoid cannabidiol (CBD) presents itself as a potentially safe and effective anti-inflammatory treatment relative to clinical standards. In this present study, we compare the capacity of CBD to the corticosteroid dexamethasone (Dex) in altering the secreted protein landscape of activated macrophages and speculate upon the mechanism underpinning these alterations. Materials and Methods: Human THP-1 monocytes were differentiated into macrophages (THP-1 derived macrophages [tMACs]), activated with lipopolysaccharide (LPS), and then treated with 5, 10, 25, 50, or 100\u2009μM CBD or 10\u2009μM Dex for 24\u2009h. Following treatment, cytotoxicity of CBD and protein expression levels from culture supernatants and from whole cell lysates were assessed for secreted and intracellular proteins, respectively. Results: High concentration (50 and 100\u2009μM) CBD treatments exhibit a cytotoxic effect on LPS-activated tMACs following the 24-h treatment. Relative to the LPS-activated and untreated control (M[LPS]), both 25\u2009μM CBD and 10\u2009μM Dex reduced expression of pro-inflammatory markers-tumor necrosis factor alpha, interleukin 1 beta, and regulated on activation, normal T cell expressed and secreted (RANTES)-as well as the pleiotropic marker interleukin-6 (IL-6). A similar trend was observed for anti-inflammatory markers interleukin-10 and vascular endothelial growth factor (VEGF). Dex further reduced secreted levels of monocyte chemoattractant protein-1 in addition to suppressing IL-6 and VEGF beyond treatments with CBD. The anti-inflammatory capacity of 25\u2009μM CBD was concurrent with reduction in levels of phosphorylated mammalian target of rapamycin Ser 2448, endothelial nitric oxide synthase, and induction of cyclooxygenase 2 relative to M(LPS). This could suggest that the observed effects on macrophage immune profile may be conferred through inhibition of mammalian target of rapamycin complex 1 and ensuing induction of autophagy. Conclusion: Cumulatively, these data demonstrate cytotoxicity of high concentration CBD treatment. The data reported herein largely agree with other literature demonstrating the anti-inflammatory effects of CBD. However, there is discrepancy within literature surrounding efficacious concentrations and effects of CBD on specific secreted proteins. These data expand upon previous work investigating the effects of CBD on inflammatory protein expression in macrophages, as well as provide insight into the mechanism by which these effects are conferred.

Volume None
Pages None
DOI 10.1089/CAN.2020.0109
Language English
Journal Cannabis and cannabinoid research

Full Text