Astrobiology | 2019

In Situ Geochronology on Mars and the Development of Future Instrumentation

 
 
 
 
 
 

Abstract


Abstract We review the in situ geochronology experiments conducted by the Mars Science Laboratory mission s Curiosity rover to understand when the Gale Crater rocks formed, underwent alteration, and became exposed to cosmogenic radiation. These experiments determined that the detrital minerals in the sedimentary rocks of Gale are ∼4 Ga, consistent with their origin in the basalts surrounding the crater. The sedimentary rocks underwent fluid-moderated alteration 2 Gyr later, which may mark the closure of aqueous activity at Gale Crater. Over the past several million years, wind-driven processes have dominated, denuding the surfaces by scarp retreat. The Curiosity measurements validate radiometric dating techniques on Mars and guide the way for future instrumentation to make more precise measurements that will further our understanding of the geological and astrobiological history of the planet.

Volume 19
Pages 1303 - 1314
DOI 10.1089/ast.2018.1871
Language English
Journal Astrobiology

Full Text