Bioinformatics | 2021

CROTON: an automated and variant-aware deep learning framework for predicting CRISPR/Cas9 editing outcomes

 
 
 

Abstract


Abstract Motivation CRISPR/Cas9 is a revolutionary gene-editing technology that has been widely utilized in biology, biotechnology and medicine. CRISPR/Cas9 editing outcomes depend on local DNA sequences at the target site and are thus predictable. However, existing prediction methods are dependent on both feature and model engineering, which restricts their performance to existing knowledge about CRISPR/Cas9 editing. Results Herein, deep multi-task convolutional neural networks (CNNs) and neural architecture search (NAS) were used to automate both feature and model engineering and create an end-to-end deep-learning framework, CROTON (CRISPR Outcomes Through cONvolutional neural networks). The CROTON model architecture was tuned automatically with NAS on a synthetic large-scale construct-based dataset and then tested on an independent primary T cell genomic editing dataset. CROTON outperformed existing expert-designed models and non-NAS CNNs in predicting 1 base pair insertion and deletion probability as well as deletion and frameshift frequency. Interpretation of CROTON revealed local sequence determinants for diverse editing outcomes. Finally, CROTON was utilized to assess how single nucleotide variants (SNVs) affect the genome editing outcomes of four clinically relevant target genes: the viral receptors ACE2 and CCR5 and the immune checkpoint inhibitors CTLA4 and PDCD1. Large SNV-induced differences in CROTON predictions in these target genes suggest that SNVs should be taken into consideration when designing widely applicable gRNAs. Availability and implementation https://github.com/vli31/CROTON. Supplementary information Supplementary data are available at Bioinformatics online.

Volume 37
Pages i342 - i348
DOI 10.1093/bioinformatics/btab268
Language English
Journal Bioinformatics

Full Text