Clinical Infectious Diseases: An Official Publication of the Infectious Diseases Society of America | 2019

Do Intracerebral Cytokine Responses Explain the Harmful Effects of Dexamethasone in Human Immunodeficiency Virus–associated Cryptococcal Meningitis?

 
 
 
 
 
 
 
 
 
 
 
 

Abstract


Abstract Background The CryptoDex trial showed that dexamethasone caused poorer clinical outcomes and slowed fungal clearance in human immunodeficiency virus–associated cryptococcal meningitis. We analyzed cerebrospinal fluid (CSF) cytokine concentrations from participants over the first week of treatment to investigate mechanisms of harm and test 2 hypotheses: (1) dexamethasone reduced proinflammatory cytokine concentrations, leading to poorer outcomes and (2) leukotriene A4 hydrolase (LTA4H) genotype influenced the clinical impact of dexamethasone, as observed in tuberculous meningitis. Methods We included participants from Vietnam, Thailand, and Uganda. Using the Luminex system, we measured CSF concentrations of the following: interferon γ, tumor necrosis factor (TNF) α, granulocyte-macrophage colony-stimulating factor, monocyte chemoattractant 1, macrophage inflammatory protein 1α, and interleukin 6, 12p70, 8, 4, 10, and 17. We determined the LTA4H genotype based on the promoter region single-nucleotide polymorphism rs17525495. We assessed the impact of dexamethasone on cytokine concentration dynamics and the association between cytokine concentration dynamics and fungal clearance with mixed effect models. We measured the influence of LTA4H genotype on outcomes with Cox regression models. Results Dexamethasone increased the rate TNF-α concentration’s decline in (−0.13 log2pg/mL/d (95% confidence interval, −.22 to −.06 log2pg/mL/d; P = .03), which was associated with slower fungal clearance (correlation, −0.62; 95% confidence interval, −.83 to −.26). LTA4H genotype had no statistically significant impact on outcome or response to dexamethasone therapy. Better clinical outcomes were associated with higher baseline concentrations of interferon γ. Conclusions Dexamethasone may slow fungal clearance and worsen outcomes by increasing TNF-α concentration’s rate of decline.

Volume 68
Pages 1494 - 1501
DOI 10.1093/cid/ciy725
Language English
Journal Clinical Infectious Diseases: An Official Publication of the Infectious Diseases Society of America

Full Text