European Heart Journal | 2021

Machine learning from quantitative coronary computed tomography angiography predicts ischemia and impaired myocardial blood flow

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Abstract


\n \n \n Atherosclerotic plaque characteristics influence the hemodynamic consequences of coronary lesions. This study sought to assess the performance of a machine learning (ML) score integrating coronary computed tomography angiography (CCTA)-based quantitative plaque features for the prediction of ischemia by invasive fractional flow reserve (FFR) and impaired myocardial blood flow (MBF) by [15O]H2O positron emission tomography (PET).\n \n \n \n This post-hoc analysis of the PACIFIC (Prospective Comparison of Cardiac PET/CT, SPECT/CT Perfusion Imaging and CT Coronary Angiography With Invasive Coronary Angiography) trial included 208 patients with suspected coronary artery disease who underwent CCTA, [15O]H2O PET, and 3-vessel invasive FFR. Plaque quantification from CCTA was performed using semiautomated software. A boosted ensemble ML algorithm (XGBoost) trained on data from the NXT (Analysis of Coronary Blood Flow using CT Angiography: Next Steps) trial was used to develop a ML score for the prediction of per-vessel ischemia (invasive FFR ≤0.80). The performance of the ML score was evaluated in 551 vessels from the PACIFIC trial for external validation. Thereafter, we assessed the discriminative ability of the ML score for per-vessel impaired hyperemic MBF (≤2.30 mL/min/g).\n \n \n \n In total, 138 (25.0%) vessels had ischemia and 195 (35.4%) vessels had impaired hyperemic MBF. CCTA-derived quantitative percent diameter stenosis and low-density noncalcified plaque (LDNCP) volume were higher in ischemic vessels compared with non-ischemic vessels (60.8% vs. 19.9%; and 42.3 mm3 vs. 9.1 mm3; both p<0.001). The ML score demonstrated a significantly higher area under the receiver-operating characteristic curve (AUC) for predicting ischemia (0.92, 95% confidence interval [CI] 0.89–0.94) compared with visual stenosis grade (0.84, 95% CI 0.80–0.87; p<0.001). Overall, quantitative percent diameter stenosis and LDNCP volume had greatest feature importance for ML, followed by percent area stenosis, minimum luminal diameter, and contrast density drop (Figure 1). An individualized explanation of ML ischemia prediction is shown in Figure 2. When applied for impaired MBF discrimination, the ML score exhibited an AUC of 0.82 (95% CI 0.78–0.85) and was superior to visual stenosis grade (AUC 0.76, 95% CI 0.72–0.80; p=0.03).\n \n \n \n An externally validated ML score integrating CCTA-based quantitative plaque features accurately predicts FFR-defined ischemia and abnormal MBF by PET, outperforming standard visual CCTA interpretation.\n \n \n \n Type of funding sources: Public grant(s) – National budget only. Main funding source(s): National Heart, Lung, and Blood Institute, United States Performance of the ML score Individual explanation of ML prediction\n

Volume None
Pages None
DOI 10.1093/eurheartj/ehab724.0206
Language English
Journal European Heart Journal

Full Text