FEMS Yeast Research | 2019

Recombinant multicopy plasmids in yeast – interactions with the endogenous 2 &mgr;m

 
 

Abstract


Flp-mediated site specific intramolecular recombination in Saccharomyces cerevisiae is considered responsible for amplification of the endogenous 2 μm plasmid. For YEp-type vectors, a similar mechanism can be imagined by which such plasmids achieve high copy numbers, a trait desired for many research applications and necessary for industrial production. We have cultivated yeast carrying one of six isomeric YEp-type model expression plasmids under two different conditions and back transformed the shuttle vectors into Escherichia coli. Our analysis of 586 ampR clones represents a high-resolution snapshot of plasmid forms present in the transformed yeast cells with a detection limit of structural changes of <2%. Altered forms summed up to about 11%, constituting likely a lower limit. We have observed two categories of recombination events. One is Flp based, with products of intermolecular recombination with the 2 μm, likely intermediates that are prerequisites for YEp-type plasmid amplification. The other type is based on Flp-independent homologous recombination leading to oligomerization of such plasmids also in a 2μm-free [cir°] strain, i.e. in the absence of Flp. Beyond the general maintenance and its functional sequences, only the gene of interest and its expression might have an impact on the physiology of the host.

Volume 19
Pages &NA;
DOI 10.1093/femsyr/foz001
Language English
Journal FEMS Yeast Research

Full Text