G3: Genes|Genomes|Genetics | 2021

Mapping causal genes and genetic interactions for agronomic traits using a large F2 population in rice

 
 
 
 
 

Abstract


Abstract Dissecting the genetic mechanisms underlying agronomic traits is of great importance for crop breeding. Agronomic traits are usually controlled by multiple quantitative trait loci (QTLs) and genetic interactions, and mapping the underlying causal genes is still labor-intensive and time-consuming. Here, we present a genetic tool for directly targeting the specific causal genes by using a single-gene resolution linkage map that was constructed from 3756 F2 rice plants via targeted sequencing technology and Tukey-Kramer multiple comparisons test. Three large- and moderate-effect QTLs, qHD6-2, qGL3-1, and qGW5-2, were successfully mapped to their specific causal genes, Hd1, GS3, and GW5, respectively. A complex genetic interaction network containing 30 QTL–QTL interactions was constructed, revealing that the alternative allele of hub QTL, qHD6-2, can hide or release the genetic contributions of the alleles at interacting loci. Moreover, arranging genetic interactions in the models lead to more accurate phenotypic predictions. These results provide a community resource and new feasible strategy for deciphering the genetic mechanisms of complex agronomic traits and accelerating crop breeding.

Volume 11
Pages None
DOI 10.1093/g3journal/jkab318
Language English
Journal G3: Genes|Genomes|Genetics

Full Text