Human molecular genetics | 2019

Physiological and pathological roles of LRRK2 in the nuclear envelope integrity.

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Abstract


Mutations in LRRK2 cause autosomal dominant and sporadic Parkinson s disease but the mechanisms involved in LRRK2 toxicity in PD are yet to be fully understood. We found that LRRK2 translocates to the nucleus by binding to seven in absentia homolog (SIAH-1), and in the nucleus it directly interacts with lamin A/C, independent of its kinase activity. LRRK2 knockdown caused nuclear lamina abnormalities and nuclear disruption. LRRK2 disease mutations mostly abolish the interaction with lamin A/C and, similar to LRRK2 knockdown, cause disorganization of lamin A/C and leakage of nuclear proteins. Dopaminergic neurons of LRRK2 G2019S transgenic and LRRK2 -/- mice display decreased circularity of the nuclear lamina and leakage of the nuclear protein 53BP1 to the cytosol. Dopaminergic nigral and cortical neurons of both LRRK2 G2019S and idiopathic PD patients exhibit abnormalities of the nuclear lamina. Our data indicate that LRRK2 plays an essential role in maintaining nuclear envelope integrity. Disruption of this function by disease mutations suggests a novel phosphorylation-independent loss of function mechanism that may synergize with other neurotoxic effects caused by LRRK2 mutations.

Volume None
Pages None
DOI 10.1093/hmg/ddz245
Language English
Journal Human molecular genetics

Full Text