Journal of Antimicrobial Chemotherapy | 2021

Pharmacokinetic modelling to estimate intracellular favipiravir ribofuranosyl-5′-triphosphate exposure to support posology for SARS-CoV-2

 
 
 
 

Abstract


Abstract Objectives Favipiravir has discrepant activity against SARS-CoV-2 in vitro, concerns about teratogenicity and pill burden, and an unknown optimal dose. This analysis used available data to simulate the intracellular pharmacokinetics of the favipiravir active metabolite [favipiravir ribofuranosyl-5′-triphosphate (FAVI-RTP)]. Methods Published in vitro data for intracellular production and elimination of FAVI-RTP in Madin–Darby canine kidney cells were fitted with a mathematical model describing the time course of intracellular FAVI-RTP as a function of favipiravir concentration. Parameter estimates were then combined with a published population pharmacokinetic model in Chinese patients to predict human intracellular FAVI-RTP. In vitro FAVI-RTP data were adequately described as a function of concentrations with an empirical model, noting simplification and consolidation of various processes and several assumptions. Results Parameter estimates from fittings to in vitro data predict a flatter dynamic range of peak to trough for intracellular FAVI-RTP (peak to trough ratio of ∼1 to 1) when driven by a predicted free plasma concentration profile, compared with the plasma profile of parent favipiravir (ratio of ∼2 to 1). This approach has important assumptions, but indicates that, despite rapid clearance of the parent from plasma, sufficient intracellular FAVI-RTP may be maintained across the dosing interval because of its long intracellular half-life. Conclusions Population mean intracellular FAVI-RTP concentrations are estimated to be maintained above the Km for the SARS-CoV-2 polymerase for 9\u2009days with a 1200\u2009mg twice-daily regimen (following a 1600\u2009mg twice-daily loading dose on day 1). Further evaluation of favipiravir as part of antiviral combinations for SARS-CoV-2 is warranted.

Volume 76
Pages 2121 - 2128
DOI 10.1093/jac/dkab135
Language English
Journal Journal of Antimicrobial Chemotherapy

Full Text