Journal of animal science | 2021

Maternal and direct genetic parameters for tail length, tail lesions, and growth traits in pigs.

 
 
 

Abstract


Tail length and tail lesions are the major triggers for tail biting in pigs. Against this background, 2 datasets were analyzed to estimate genetic parameters for tail characteristics and growth traits. Dataset 1 considered measurements for trait tail length (T-LEN) and for the growth traits birth weight (BW), weaning weight (WW), postweaning weight (PWW), and average daily gain (ADG) from 9,348 piglets. Piglets were born in the period from 2015 to 2018 and kept on the university Gießen research station. Dataset 2 included 4,943 binary observations from 1,648 pigs from the birth years 2016 to 2019 for tail lesions (T-LES) as indicators for nail necrosis, tail abnormalities, or tail biting. T-LES were recorded at 30 ± 7 d after entry for rearing (T-Les-1), at 50 ± 7 d after entry for rearing (end of the rearing period, T-LES-2), and 130 ± 20 d after entry for rearing (end of fattening period, T-LES-3). Genetic statistical model evaluation for dataset 1 based on Akaike s information criterion and likelihood ration tests suggested multiple-trait animal models considering covariances between direct and maternal genetic effects. The direct heritability for T-LEN was 0.42 (±0.03), indicating the potential for genetic selection on short tails. The maternal genetic heritability for T-LEN was 0.05 (±0.04), indicating the influence of uterine characteristics on morphological traits. The negative correlation between direct and maternal effects for T-LEN of -0.35 (±0.13), as well as the antagonistic relationships (i.e., positive direct genetic correlations in the range from 0.03 to 0.40) between T-LEN with the growth traits BW, WW, PWW, and ADG, complicate selection strategies and breeding goal definitions. The correlations between direct effects for T-LEN and maternal effects for breeding goal traits, and vice versa, were positive but associated with a quite large SE. The heritability for T-LES when considering the 3 repeated measurements was 0.23 (±0.04) from the linear (repeatability of 0.30) and 0.21 (±0.06; repeatability of 0.29) from the threshold model. The breeding value correlations between T-LES-3 with breeding values from the repeatability models were quite large (0.74 to 0.90), suggesting trait lesion recording at the end of the rearing period. To understand all genetic mechanisms in detail, ongoing studies are focusing on association analyses between T-LEN and T-LES, and the identification of tail biting from an actor s perspective.

Volume 99 1
Pages None
DOI 10.1093/jas/skaa398
Language English
Journal Journal of animal science

Full Text