Journal of Animal Science | 2019

Dietary supplementation of a fiber-prebiotic and saccharin-eugenol blend in extruded diets fed to dogs

 
 
 
 
 

Abstract


Abstract Prebiotics and dietary fibers are nondigestible ingredients that may confer benefits to the host by selectively stimulating beneficial intestinal bacteria and microbial-derived metabolites that support gut and host health. This experiment evaluated the effects of a blend of prebiotics and dietary fibers on apparent total tract digestibility (ATTD) and fecal metabolites related to gastrointestinal health in adult dogs. Four diets containing either 5% cellulose (control; CT), 5% dietary fiber and prebiotic blend (FP), 0.02% saccharin and eugenol (SE), or 5% fiber blend plus 0.02% saccharin and eugenol (FSE) were formulated to meet or exceed the AAFCO (2017) nutritional requirements for adult dogs. Eight adult female beagles (mean age 4.2 ± 1.1 yr; mean BW = 10.8 ± 1.4 kg; mean BCS = 5.8 ± 0.6) were randomly assigned to 1 of the 4 dietary treatments using a replicated 4 × 4 Latin square design. Each experimental period consisted of 14 d (10 d of diet adaptation and 4 d of total and fresh fecal and total urine collection). All animals remained healthy throughout the study, with serum metabolites being within reference ranges for adult dogs. All diets were well accepted by the dogs, resulting in similar (P > 0.05) daily food intakes among treatments. Likewise, fecal output and scores did not differ (P > 0.05) among dietary treatments, with the latter being within the ideal range (2.5–2.9) in a 5-point scale. All diets were highly digestible and had similar (P > 0.05) ATTD of dry matter (81.6%–84.4%), organic matter (86.4%–87.3%), and crude protein (86.6%–87.3%). However, total dietary fiber (TDF) digestibility was greater for dogs fed the FSE diet (P < 0.05) in contrast with dogs fed the CT and SE diets, whereas dogs fed FP diets had intermediate TDF digestibility, but not different from all other treatments. Fecal acetate and propionate concentrations were greater (P < 0.05) for dogs fed FP and FSE diets. Fecal concentrations of isobutyrate and isovalerate were greater for dogs fed CT (P < 0.05) compared with dogs fed the other three treatments. No shifts in fecal microbial richness and diversity were observed among dietary treatments. Overall, the data suggest that dietary supplementation of fiber and prebiotic blend was well tolerated by dogs, did not cause detrimental effects on fecal quality or nutrient digestibility, and resulted in beneficial shifts in fecal metabolites that may support gut health.

Volume 97
Pages 4519 - 4531
DOI 10.1093/jas/skz293
Language English
Journal Journal of Animal Science

Full Text