Journal of Medical Entomology | 2019

The Effect of Entomopathogenic Fungi on Enzymatic Activity in Chlorpyrifos-Resistant Mosquitoes, Culex quinquefasciatus (Diptera: Culicidae)

 
 
 
 
 

Abstract


Abstract Culex quinquefasciatus Say is an important pest species and a vector of multiple pathogens. Insecticide applications are necessary for the effective control of mosquitoes. In the current study, a laboratory population of Cx. quinquefasciatus was exposed to chlorpyrifos for 15 consecutive generations and then assessed for the changes in detoxification enzyme activities before and after exposure to Metarhizium anisopliae (Metschn.) Sorokin and Beauveria bassiana (Bals.) Vuill. during 14th–15th generations. Activities of acetylcholinesterase (AChE), glutathione S-transferase (GST), esterase (EST), acid phosphatases (ACP), and alkaline phosphatases (ALP) were increased in the chlorpyrifos-selected (Chlor-SEL) population in relation to an unselected (Un-SEL) population. The resistance ratio of Chlor-SEL 15th generation (G15) was increased 3,583-fold against first generation (G1) and 6,026-fold against the Un-SEL population. The results depicted maximum activities of ACP (83.48), ALP (65.54), GST (13.047), EST (10.42), and AChE (4.86) µmol/min of mg/ml protein at G15 after consecutive chlorpyrifos applications. The Chlor-SEL populations at G14–G15 were treated with different concentrations of M. anisopliae and B. bassiana for possible suppression of enzymatic activities. Activities of ACP were suppressed to 24.22 µmol/min of mg/ml protein at G15 when exposed to B. bassiana and 22.40 µmol/min of mg/ml protein at G14 after exposure to M. anisopliae. The suppression of detoxification enzymes by application of fungi in resistant population of Cx. quinquefasciatus will aid in the mosquito s management programs.

Volume 57
Pages 204 - 213
DOI 10.1093/jme/tjz143
Language English
Journal Journal of Medical Entomology

Full Text