The Journal of nutrition | 2021

Incorporation of Dietary Amino Acids Into Myofibrillar and Sarcoplasmic Proteins in Free-Living Adults Is Influenced by Sex, Resistance Exercise, and Training Status.

 
 
 
 
 
 
 

Abstract


BACKGROUND\nAcute exercise increases the incorporation of dietary amino acids into de novo myofibrillar proteins after a single meal in controlled laboratory studies in males. It is unclear whether this extends to free-living settings or is influenced by training or sex.\n\n\nOBJECTIVES\nWe determined the effects of exercise, training status, and sex on 24-hour free-living dietary phenylalanine incorporation into skeletal muscle proteins.\n\n\nMETHODS\nIn a parallel group design, recreationally active males (mean\xa0±\xa0SD age, 23\xa0±\xa03 years; \xa0BMI. 23.4\xa0±\xa02.9 kg/m2; n\xa0=\xa010) and females (age 24\xa0±\xa05 years; \xa0BMI, 23.1\xa0± 3.9 kg/m2; n\xa0=\xa09) underwent 8 weeks of whole-body resistance exercise 3 times a week. Controlled diets containing 1.6 g/kg-1/d-1 (amino acids modelled after egg), enriched to 10% with [13C6] or [2H5]phenylalanine, were consumed before and after an acute bout of resistance exercise. Fasted muscle biopsies were obtained before [untrained, pre-exercise condition (REST ] and 24 hours after an acute bout of resistance exercise in untrained (UT) and trained (T) states to determine dietary phenylalanine incorporation into myofibrillar (ΔMyo) and sarcoplasmic (ΔSarc) proteins, intracellular mechanistic target of rapamycin (mTOR) colocalization with ulex europaeus agglutinin-1 (UEA-1; capillary marker; immunofluorescence), and amino acid transporter expression (Western blotting).\n\n\nRESULTS\nThe ΔMyo values were ∼62% greater (P <\xa00.01) in females than males at REST. The ΔMyo values increased above REST by ∼51% during UT and ∼30% in T (both P <\xa00.01) in males, remained unchanged in females during UT, and were ∼33% lower at T when compared to UT (P\xa0=\xa00.013). Irrespective of sex, ΔMyo and ΔSarc were decreased at T compared to UT (P\xa0≤\xa00.026). Resistance training increased mTOR colocalization with UEA-1 (P\xa0=\xa00.004), while L amino acid transporter 1, which was greater in males (P <\xa00.01), and sodium-coupled neutral amino acid transporter 2 protein expression were not affected by acute exercise (P\xa0≥\xa00.33) or training (P\xa0≥\xa00.45).\n\n\nCONCLUSIONS\nThe exercise-induced incorporation of dietary phenylalanine into myofibrillar and sarcoplasmic proteins is attenuated after training regardless of sex, suggesting a reduced reliance on dietary amino acids for postexercise skeletal muscle remodeling in the T state.

Volume None
Pages None
DOI 10.1093/jn/nxab261
Language English
Journal The Journal of nutrition

Full Text