Journal of Radiation Research | 2021

Technical Note: validation of a material assignment method for a retrospective study of carbon-ion radiotherapy using Monte Carlo simulation

 
 
 
 
 
 
 

Abstract


Abstract We propose a two-step method to converse human tissue materials from patient computed tomography (CT) images, which is required in dose reconstructions for a retrospective study of carbon-ion radiotherapy (CIRT) using Monte Carlo (MC) simulation. The first step was to assign the standard tissues of the International Commission on Radiological Protection reference phantoms according to the CT-number. The second step was to determine the mass density of each material based on the relationship between CT-number and stopping power ratio (Hounsfield unit [HU]-SPR) registered in treatment planning system (TPS). Direct implementation of the well-calibrated HU-SPR curve allows the reproduction of previous clinical treatments recorded in TPS without uncertainty due to a mismatch of the CT scanner or scanning conditions, whereas MC simulation with realistic human tissue materials can fulfill the out-of-field dose, which was missing in the record. To validate our proposed method, depth-dose distributions in the homogenous and heterogeneous phantoms irradiated by a 400 MeV/u carbon beam with an 8 cm spread-out Bragg peak (SOBP) were computed by the MC simulation in combination with the proposed methods and compared with those of TPS. Good agreement of the depth-dose distributions between the TPS and MC simulation (within a 1% discrepancy in range) was obtained for different materials. In contrast, fluence distributions of secondary particles revealed the necessity of MC simulation using realistic human tissue. The proposed material assignment method will be used for a retrospective study using previous clinical data of CIRT at the National Institute of Radiological Sciences (NIRS).

Volume 62
Pages 846 - 855
DOI 10.1093/jrr/rrab028
Language English
Journal Journal of Radiation Research

Full Text