Journal of experimental botany | 2019

Combining phenotype, genotype and environment to uncover genetic components underlying water use efficiency in Persian walnut.

 
 
 
 
 
 
 

Abstract


Walnut production is challenged by climate change and abiotic stresses. Elucidating the genomic basis of adaptation to climate is essential to breeding drought tolerant cultivars for enhanced productivity in arid and semi-arid regions. Here, we aimed to identify loci potentially involved in water use efficiency (WUE) and adaptation to drought in Persian walnut using a diverse panel of 95 walnut families (950 seedlings) from Iran, which show contrasting levels of water availability in their native habitats. We analyzed associations between phenotypic, genotypic, and environmental variables from datasets of 609 K high-quality single-nucleotide polymorphisms (SNPs), three categories of phenotypic traits (WUE related traits under drought, their drought stress index and principal components), and 21 climate variables and combination of them (first three PCs). Our genotype-phenotype analysis identified 22 significant and 266 suggestive associations, some of which were identified for multiple traits, suggesting their correlation and a possible common genetic control. Also, genotype-environment association analysis found 115 significant and 265 suggestive SNP loci that displayed potential signals of local adaptation. Several sets of stress-responsive genes were found in the genomic regions significantly associated with the aforementioned traits. Most of the candidate genes identified are involved in abscisic acid signaling, stomatal regulation, transduction of environmental signals, antioxidant defense system, osmotic adjustment, and leaf growth and development. Upon validation, the marker-trait associations identified for drought tolerance-related traits would allow the selection and development of new walnut rootstocks or scion cultivars with superior water use efficiency.

Volume None
Pages None
DOI 10.1093/jxb/erz467
Language English
Journal Journal of experimental botany

Full Text