Archive | 2021

Evolution of subhalo orbits in a smoothly growing host halo potential

 
 
 

Abstract


The orbital parameters of dark matter (DM) subhaloes play an essential role in determining their mass-loss rates and overall spatial distribution within a host halo. Haloes in cosmological simulations grow by a combination of relatively smooth accretion and more violent mergers, and both processeswill modify subhalo orbits. To isolate the impact of the smooth growth of the host halo from other relevant mechanisms, we study subhalo orbital evolution using numerical calculations in which subhaloes are modelled as massless particles orbiting in a time-varying spherical potential. We find that the radial action of the subhalo orbit decreases over the first few orbits, indicating that the response to the growth of the host halo is not adiabatic during this phase. The subhalo orbits can shrink by a factor of ∼1.5 in this phase. Subsequently, the radial action is well conserved and orbital contraction slows down. We propose a model accurately describing the orbital evolution. Given these results, we consider the spatial distribution of the population of subhaloes identified in high-resolution cosmological simulations. We find that it is consistent with this population having been accreted at z < ∼ 3, indicating that any subhaloes accreted earlier are unresolved in the simulations.We also discuss tidal stripping as a formation scenario for NGC1052-DF2, an ultra diffuse galaxy significantly lacking DM, and find that its expected DM mass could be consistent with observational constraints if its progenitor was accreted early enough, z > ∼ 1.5, although it should still be a relatively rare object.

Volume None
Pages None
DOI 10.1093/mnras/stab361
Language English
Journal None

Full Text