Monthly Notices of the Royal Astronomical Society | 2019

A machine learning artificial neural network calibration of the strong-line oxygen abundance

 

Abstract


The HII region oxygen abundance is a key observable for studying chemical properties of galaxies. Deriving oxygen abundances using optical spectra often relies on empirical strong-line calibrations calibrated to the direct method. Existing calibrations usually adopt linear or polynomial functions to describe the non-linear relationships between strong line ratios and Te oxygen abundances. Here, I explore the possibility of using an artificial neural network model to construct a non-linear strong-line calibration. Using about 950 literature HII region spectra with auroral line detections, I build multi-layer perceptron models under the machine learning framework of training and testing. I show that complex models, like the neural network, are preferred at the current sample size and can better predict oxygen abundance than simple linear models. I demonstrate that the new calibration can reproduce metallicity gradients in nearby galaxies and the mass-metallicity relationship. Finally, I discuss the prospects of developing new neural network calibrations using forthcoming large samples of HII region and also the challenges faced.

Volume 485
Pages 3569-3579
DOI 10.1093/mnras/stz649
Language English
Journal Monthly Notices of the Royal Astronomical Society

Full Text