Tree physiology | 2021

Low temperature acclimation and legacy effects of summer water deficits in olive freezing resistance.

 
 
 
 

Abstract


Low temperatures and drought are the main environmental factors affecting plant growth and productivity across most of the terrestrial biomes. The objective of this study was to analyze the effects of water deficits before the onset of low temperatures in winter to enhance freezing resistance in olive trees. The study was carried out near the coast of Chubut, Argentina. Plants of five olive cultivars were grown out-door in pots and exposed to different water deficit treatments. We assessed leaf water relations, ice nucleation temperature (INT), cell damage (LT50), plant growth and leaf nitrogen content during summer and winter in all cultivars and across water deficit treatments. Leaf INT and LT50 decreased significantly from summer to winter within each cultivar and between treatments. We observed a trade-off between resources allocation to freezing resistance and vegetative growth, such that an improvement in resistance to sub-zero temperatures was associated to lower growth in tree height. Water deficit applied during summer increased the amount of osmotically active solutes and decreased the leaf water potentials. This type of legacy effects persists during the winter after the water deficit even when treatment was removed, because of natural rainfalls.

Volume None
Pages None
DOI 10.1093/treephys/tpab040
Language English
Journal Tree physiology

Full Text