The FASEB Journal | 2019

Phosphorylation of MCPH1 isoforms during mitosis followed by isoform-specific degradation by APC/C-CDH1

 
 
 
 
 
 

Abstract


Microcephalin‐1 (MCPH1) exists as 2 isoforms that regulate cyclin‐dependent kinase‐1 activation and chromosome condensation during mitosis, with MCPH1 mutations causing primary microcephaly. MCPH1 is also a tumor suppressor protein, with roles in DNA damage repair/checkpoints. Despite these important roles, there is little information on the cellular regulation of MCPH1. We show that both MCPH1 isoforms are phosphorylated in a cyclin‐dependent kinase‐1–dependent manner in mitosis and identify several novel phosphorylation sites. Upon mitotic exit, MCPH1 isoforms were degraded by the anaphase‐promoting complex/cyclosome–CDH1 E3 ligase complex. Anaphase‐promoting complex/cyclosome–CDH1 target proteins generally have D‐Box or KEN‐Box degron sequences. We found that MCPH1 isoforms are degraded independently, with the long isoform degradation being D‐Box dependent, whereas the short isoform was KEN‐Box dependent. Our research identifies several novel mechanisms regulating MCPH1 and also highlights important issues with several commercial MCPH1 antibodies, with potential relevance to previously published data.—Meyer, S. K., Dunn, M., Vidler, D. S., Porter, A., Blain, P. G., Jowsey, P. A. Phosphorylation of MCPH1 isoforms during mitosis followed by isoform‐specific degradation by APC/C‐CDH1. FASEB J. 33, 2796–2808 (2019). www.fasebj.org

Volume 33
Pages 2796 - 2808
DOI 10.1096/fj.201801353R
Language English
Journal The FASEB Journal

Full Text