Clinical Spine Surgery | 2019

Anatomic Considerations in the Lateral Transpsoas Interbody Fusion

 
 
 
 
 
 
 
 
 

Abstract


Study Design: This is a retrospective case series. Objective: Define the anatomic variations and the risk factors for such within the operative corridor of the transpsoas lateral interbody fusion. Summary of Background Data: The lateral interbody fusion approach has recently been associated with devastating complications such as injury to the lumbosacral plexus, surrounding vasculature, and bowel. A more comprehensive understanding of anatomic structures in relation to this approach using preoperative imaging would help surgeons identify high-risk patients potentially minimizing these complications. Materials and Methods: Age-sex distributed, naive lumbar spine magnetic resonance imagings (n=180) were used to identify the corridor for the lateral lumbar interbody approach using axial images. Bilateral measurements were taken from L1–S1 to determine the locations of critical vascular, intraperitoneal, and muscular structures. In addition, a subcohort of scoliosis patients (n=39) with a Cobb angle >10 degrees were identified and compared. Results: Right-sided vascular anatomy was significantly more variant than left (9.9% vs. 5.7%; P=0.001). There were 9 instances of “at-risk” vasculature on the right side compared with 0 on the left (P=0.004). Age increased vascular anatomy variance bilaterally, particularly in the more caudal levels (P≤0.001). A “rising-psoas sign” was observed in 26.1% of patients. Bowel was identified within the corridor in 30.5% of patients and correlated positively with body mass index (P<0.001). Scoliosis increased variant anatomy of left-sided vasculature at L2–3/L3–4. Nearly all variant anatomy in this group was found on the convex side of the curvature (94.2%). Conclusions: Given the risks and complications associated with this approach, careful planning must be taken with an understanding of vulnerable anatomic structures. Our analysis suggests that approaching the intervertebral space from the patient’s left may reduce the risk of encountering critical vascular structures. Similarly, in the setting of scoliosis, an approach toward the concave side may have a more predictable course for surrounding anatomy. Level of Evidence: Level 3—study.

Volume 32
Pages 215 - 221
DOI 10.1097/BSD.0000000000000760
Language English
Journal Clinical Spine Surgery

Full Text