Anti-Cancer Drugs | 2021

VALD-3 inhibits proliferation and induces apoptosis of colorectal cancer cells via upregulating tumor suppressor activity of p53 to inhibit Wnt/β-catenin signal pathway

 
 
 
 
 

Abstract


Colorectal cancer is the third most common malignant tumor and a leading cause of cancer death. Currently lacks effective therapies available to improve the prognosis. In the present study, VALD-3, an important Schiff base ligand from o-vanillin derivatives was evaluated for its anti-cancer activity in vitro and in vivo against colorectal cancer. The effect of VALD-3 on colorectal cancer cells proliferation was assessed using MTT assay and the cell migration was evaluated using wound healing scratch assay. The appearance of apoptotic colorectal cancer cells was detected by flowcytometry analysis. Morphological changes caused by VALD-3 induced apoptosis were also observed by Hoechst 33258 staining. The flow cytometry assay was also used to measure cell cycle arrest. The expression levels of TP53 and Bad were analyzed using quantitative real-time PCR. Protein expression of P53, Wnt/β-catenin signaling pathway proteins, apoptosis proteins and cell cycle-related protein were viewed by Western blotting. In addition, HT-29 cells xenograft tumor model was used for the study in vivo. Immunohistochemistry (IHC) staining was employed to detect the P53 protein expression. The results showed that VALD-3 obviously inhibited the proliferation and migration for colorectal cancer cells. In addition, flow cytometry analysis demonstrated that VALD-3 markedly increased early and late apoptosis on colorectal cancer cells, respectively. VALD-3 induced cell cycle arrest at the G0/G1 phase. Most importantly, tumor growth in HT-29 xenograft mice was suppressed by VALD-3, but no significant change in body weight. As confirmed by IHC staining from tumor tissue, the P53 proteins expression increased. These results suggested that VALD-3 represses cell proliferation and induces apoptosis associated with upregulating tumor suppressor activity of p53 to inhibit Wnt/β-catenin signal pathway, and it is a potential anticancer agent for colorectal cancer.

Volume 32
Pages 1046 - 1057
DOI 10.1097/CAD.0000000000001116
Language English
Journal Anti-Cancer Drugs

Full Text