Investigative Radiology | 2021

Photon-Counting Multienergy Computed Tomography With Spectrally Optimized Contrast Media for Plaque Removal and Stenosis Assessment

 
 
 
 
 
 
 
 
 
 

Abstract


Purpose The aim of this study was to systematically evaluate the potential to combine investigational contrast media with spectrally optimized energy-thresholding of photon-counting detector computed tomography (PCCT) for subtraction of calcified plaques in a coronary artery stenosis phantom. Methods A small vessel phantom containing 3 fillable tubes (diameter, 3 mm each) with calcified plaques was placed into an anthropomorphic chest phantom. The plaques had incremental thicknesses ranging from 0.3 to 2.7 mm, simulating vessel stenoses ranging from 10% to 90% of the lumen diameter. The phantom was filled with 5 different investigational contrast media (iodine, bismuth, hafnium, holmium, and tungsten) at equal mass concentrations (15 mg/mL) and was imaged on a prototype PCCT at 140 kVp using optimized, contrast media–dependent energy thresholds. Contrast maps (CMs) were reconstructed for each contrast medium by applying a linear 2-material decomposition algorithm. Image noise magnitude and noise texture of CM were compared among the contrast media using the noise power spectrum. Two blinded readers independently rated the vessel lumen visualization on short-axis and the overall subjective image quality on long-axis CM relative to iodine as the reference standard. Four readers determined the highest degree of stenosis that could be assessed with high diagnostic confidence on long-axis CM. Results Average image noise on CM was lower for tungsten (49 HU) and hafnium (62 HU) and higher for bismuth (81 HU) and holmium (165 HU) compared with iodine (78 HU). Noise texture of CM was similar among the contrast media. Interreader agreement for vessel lumen visualization on short-axis CM ranged from moderate to excellent (k = 0.567–0.814). Compared with iodine, lumen visualization of each reader was improved using tungsten (P < 0.001 for both readers), similar to improved using hafnium (P = 0.008, P = 0.29), similar using bismuth (P = 0.38, P = 0.69), and decreased using holmium (both, P < 0.001). Overall subjective image quality was similar for holmium and superior for tungsten, hafnium, and bismuth as compared with iodine. Higher-degree stenoses were evaluable with high confidence using tungsten (mean, 70%; interquartile range, 70%–70%), bismuth (70%; 60%–70%), and hafnium (75%; 70%–80%) compared with iodine (50%; 50%–60%) and holmium (50%; 50%–60%). Conclusions Spectral optimization in PCCT combined with investigational contrast media can improve calcium subtraction and stenosis assessment in small vessels. Contrast maps of tungsten and, to a lesser extent, hafnium as contrast media yielded superior image noise properties and improved vessel lumen visualization, along with a higher subjective image quality compared with the reference standard iodine.

Volume 56
Pages 563 - 570
DOI 10.1097/RLI.0000000000000773
Language English
Journal Investigative Radiology

Full Text