Current Opinion in Neurology | 2021

Visual field defects in temporal lobe epilepsy surgery

 
 
 

Abstract


Purpose of review Surgery can provide a robust long-standing seizure remission in drug-refractory mesial temporal lobe epilepsy (MTLE). Despite this, a significant proportion of postoperative patients are ineligible to gain a driving licence due to the size of the subsequent visual field defect (VFD). The amygdala and hippocampus are intimately related to several important white fibre association tracts and damage to the optic radiation results in a contralateral superior quadrantanopia. For this reason, several different modifications to established surgical approaches and novel techniques have recently been applied to mitigate or prevent damage to the optic radiation. There is still no consensus on which operative technique results in optimal outcomes regarding seizure remission, neuropsychological sequelae and VFD rates. We explore contemporary surgical approaches to the mesial temporal lobe and describe the intraoperative use of tractography and iMRI in preventing VFDs. Recent findings Established approaches for the surgical treatment of MTLE include standardized approaches in the form of anterior temporal lobectomies, selective approaches and various modifications thereof. Recent advancements in microsurgical techniques have seen numerous modifications to these approaches to spare the optic radiation as well as the introduction of minimally invasive alternatives such as laser interstitial thermal therapy (LITT) and stereotactic radiosurgery (SRS). The intraoperative use of optic radiation tractography through overlays in the operative microscope and interventional MRI suites to correct for brain shift have been shown to reduce VFDs. Summary VFDs following the surgical treatment of drug-refractory MTLE can have a significant impact on the quality of life. Each of the surgical techniques carries a risk to the visual pathways but the use of minimally invasive techniques as well as surgical adjuncts may reduce or prevent acquired VFDs.

Volume 34
Pages 188 - 196
DOI 10.1097/WCO.0000000000000905
Language English
Journal Current Opinion in Neurology

Full Text