Journal of the Royal Society Interface | 2019

In vivo effects of different orthodontic loading on root resorption and correlation with mechanobiological stimulus in periodontal ligament

 
 
 
 
 
 
 
 

Abstract


Orthodontic root resorption is a common side effect of orthodontic therapy. It has been shown that high hydrostatic pressure in the periodontal ligament (PDL) generated by orthodontic forces will trigger recruitment of odontoclasts, leaving resorption craters on root surfaces. The patterns of resorption craters are the traces of odontoclast activity. This study aimed to investigate resorptive patterns by: (i) quantifying spatial root resorption under two different levels of in vivo orthodontic loadings using microCT imaging techniques and (ii) correlating the spatial distribution pattern of resorption craters with the induced mechanobiological stimulus field in PDL through nonlinear finite-element analysis (FEA) in silico. Results indicated that the heavy force led to a larger total resorption volume than the light force, mainly by presenting greater individual crater volumes (p < 0.001) than increasing crater numbers, suggesting that increased mechano-stimulus predominantly boosted cellular resorption activity rather than recruiting more odontoclasts. Furthermore, buccal–cervical and lingual–apical regions in both groups were found to have significantly larger resorption volumes than other regions (p < 0.005). These clinical observations are complemented by the FEA results, suggesting that root resorption was more likely to occur when the volume average compressive hydrostatic pressure exceeded the capillary blood pressure (4.7 kPa).

Volume 16
Pages None
DOI 10.1098/rsif.2019.0108
Language English
Journal Journal of the Royal Society Interface

Full Text