Royal Society Open Science | 2021

Effective removal of tetracycline antibiotics from wastewater using practically applicable iron(III)-loaded cellulose nanofibres

 
 
 
 

Abstract


The non-toxic and completely biodegradable cellulose within bamboo is one of the most abundant agricultural polysaccharide wastes worldwide, and can be processed into cellulose nanofibres (CNFs). Iron(III)-loaded CNFs (Fe(III)@CNFs) derived from bamboo were prepared to improve the adsorption of tetracycline (TC), chlortetracycline (CTC) and oxytetracycline (OTC) from an aqueous solution. The preparation conditions of Fe(III)@CNFs suitable for the simultaneous adsorption of three tetracycline antibiotics (TCs) were investigated. Various analyses proved the abundance of oxygen-containing functional groups and the existence of Fe(III) active metal sites in Fe(III)@CNFs. In batch experiments, Fe(III)@CNFs were applied under a wide pH range and the maximum adsorption capacities were 294.12, 232.56 and 500.00 mg g−1 (for TC, CTC and OTC, respectively). In addition, different concentrations and types of coexisting anions have a weak effect on TCs adsorption. The original TCs adsorption capacities of Fe(III)@CNFs remained stable (greater than 92%) after five cycles when UV + H2O2 was used as the regeneration method. Four adsorption mechanisms (surface complexation, hydrogen bonding, electrostatic interaction and van der Waals force) were obtained for the endothermic adsorption of TCs, among which surface complexation between Fe(III) and TCs always dominates. The practically applicable Fe(III)@CNFs adsorbents are promising for TCs enrichment and remediation in engineering applications.

Volume 8
Pages None
DOI 10.1098/rsos.210336
Language English
Journal Royal Society Open Science

Full Text