bioRxiv | 2021

Emergence and organization of adult brain function throughout child development

 
 
 

Abstract


Adult cognitive neuroscience has guided the study of human brain development by identifying regions associated with cognitive functions at maturity. The activity, connectivity, and structure of a region can be compared across ages to characterize the developmental trajectory of the corresponding function. However, observed developmental differences may not only reflect the maturation of the function but also its organization across the brain. That is, a function may be mature in children but supported by different brain regions and thus underestimated by focusing on adult regions. To test these possibilities, we investigated the presence, maturity, and localization of adult functions in children using probabilistic shared response modeling, a machine learning approach for functional alignment. After learning a lower-dimensional feature space from fMRI activity as adults watched a movie, we translated these shared features into the anatomical brain space of children 3–12 years old. To evaluate functional maturity, we correlated this reconstructed activity with the children’s actual fMRI activity as they watched the same movie. We found reliable correlations throughout cortex, even in the youngest children. The strength of the correlation in the precuneus, inferior frontal gyrus, and lateral occipital cortex increased over development and predicted chronological age. These age-related changes were driven by three types of developmental trajectories across distinct features of adult function: emergence from absence to presence, consistency in anatomical expression, and reorganization from one anatomical region to another. This data-driven approach to studying brain-wide function during naturalistic perception provides an abstract description of cognitive development throughout childhood. Significance Statement When watching a movie, your brain processes many types of information—plotlines, characters, locations, etc. A child watching this movie receives the same input, but some of their cognitive abilities (e.g., motion detection) are more developed than others (e.g., emotional reasoning). Beyond anatomical differences, when does the child brain begin to function like an adult brain? We used a data-driven approach to extract different aspects of brain activity from adults while they watched a movie during fMRI. We then predicted what the brain activity of a child would look like if they had processed the movie the same way. Comparing this prediction with actual brain activity from children allowed us to track the development of human brain function.

Volume None
Pages None
DOI 10.1101/2020.05.09.085860
Language English
Journal bioRxiv

Full Text