bioRxiv | 2021

Design of Specific Primer Sets for the Detection of SARS-CoV-2 Variants of Concern B.1.1.7, B.1.351, P.1, B.1.617.2 using Artificial Intelligence

 
 
 
 
 
 
 
 
 
 

Abstract


As the COVID-19 pandemic continues, new SARS-CoV-2 variants with potentially dangerous features have been identified by the scientific community. Variant B.1.1.7 lineage clade GR from Global Initiative on Sharing All Influenza Data (GISAID) was first detected in the UK, and it appears to possess an increased transmissibility. At the same time, South African authorities reported variant B.1.351, that shares several mutations with B.1.1.7, and might also present high transmissibility. Earlier this year, a variant labelled P.1 with 17 non-synonymous mutations was detected in Brazil. Recently the World Health Organization has raised concern for the variants B.1.617.2 mainly detected in India but now exported worldwide. It is paramount to rapidly develop specific molecular tests to uniquely identify new variants. Using a completely automated pipeline built around deep learning and evolutionary algorithms techniques, we designed primer sets specific to variants B.1.1.7, B.1.351, P.1 and respectively. Starting from sequences openly available in the GISAID repository, our pipeline was able to deliver the primer sets for each variant. In-silico tests show that the sequences in the primer sets present high accuracy and are based on 2 mutations or more. In addition, we present an analysis of key mutations for SARS-CoV-2 variants. Finally, we tested the designed primers for B.1.1.7 using RT-PCR. The presented methodology can be exploited to swiftly obtain primer sets for each new variant, that can later be a part of a multiplexed approach for the initial diagnosis of COVID-19 patients.

Volume None
Pages None
DOI 10.1101/2021.01.20.427043
Language English
Journal bioRxiv

Full Text