bioRxiv | 2021

A robust method to isolate Drosophila fat body nuclei for transcriptomic analysis

 
 

Abstract


Gene expression profiles are typically described at the level of the tissue or, often in Drosophila, at the level of the whole organism. Collapsing the gene expression of entire tissues into single measures averages over potentially important heterogeneity among the cells that make up that tissue. The advent of single-cell RNA-sequencing technology (sc-RNAseq) allows transcriptomic evaluation of the individual cells that make up a tissue. However, sc-RNAseq requires a high-quality suspension of viable cells or nuclei, and cell dissociation methods that yield healthy cells and nuclei are still lacking for many important tissues. The insect fat body is a polyfunctional tissue responsible for diverse physiological processes and therefore is an important target for sc-RNAseq. The Drosophila adult fat body consists of fragile cells that are difficult to dissociate while maintaining cell viability. As an alternative, we developed a method to isolate single fat body nuclei for RNA-seq. Our isolation method is largely free of mitochondrial contamination and yields higher capture of transcripts per nucleus compared to other nuclei preparation methods. Our method works well for single cell nuclei sequencing and potentially can be implemented for bulk RNA-seq.

Volume None
Pages None
DOI 10.1101/2021.01.27.428429
Language English
Journal bioRxiv

Full Text