Archive | 2021

Aerosol emission from the respiratory tract: an analysis of relative risks from oxygen delivery systems

 
 
 
 
 
 
 
 
 
 
 
 
 

Abstract


Background: Risk of aerosolisation of SARS-CoV-2 directly informs organisation of acute healthcare and PPE guidance. Continuous positive airways pressure (CPAP) and high-flow nasal oxygen (HFNO) are widely used modes of oxygen delivery and respiratory support for patients with severe COVID-19, with both considered as high risk aerosol generating procedures. However, there are limited high quality experimental data characterising aerosolisation during oxygen delivery and respiratory support. Methods: Healthy volunteers were recruited to breathe, speak, and cough in ultra-clean, laminar flow theatres followed by using oxygen and respiratory support systems. Aerosol emission was measured using two discrete methodologies, simultaneously. Hospitalised patients with COVID-19 were also recruited and had aerosol emissions measured during breathing, speaking, and coughing. Findings: In healthy volunteers (n = 25 subjects; 531 measures), CPAP (with exhalation port filter) produced less aerosols than breathing, speaking and coughing (even with large >50L/m facemask leaks). HFNO did emit aerosols, but the majority of these particles were generated from the HFNO machine, not the patient. HFNO-generated particles were small (<1 micron), passing from the machine through the patient and to the detector without coalescence with respiratory aerosol, thereby unlikely to carry viral particles. Coughing was associated with the highest aerosol emissions with a peak concentration at least 10 times greater the mean concentration generated from speaking or breathing. Hospitalised patients with COVID-19 (n = 8 subjects; 56 measures) had similar size distributions to healthy volunteers. Interpretation: In healthy volunteers, CPAP is associated with less aerosol emission than breathing, speaking or coughing. Aerosol emission from the respiratory tract does not appear to be increased by HFNO. Although direct comparisons are complex, cough appears to generate significant aerosols in a size range compatible with airborne transmission of SARS-CoV-2. As a consequence, the risk of SARS-CoV-2 aerosolisation is likely to be high in all areas where patients with Covid-19 are coughing. Guidance on personal protective equipment policy should reflect these updated risks. Funding: NIHR-UKRI Rapid COVID call (COV003), Wellcome Trust GW4-CAT Doctoral Training Scheme (FH), MRC CARP Fellowship(JD, MR/T005114/1). Natural Environment Research Council grant (BB, NE/P018459/1)

Volume None
Pages None
DOI 10.1101/2021.01.29.21250552
Language English
Journal None

Full Text