bioRxiv | 2021

Mesenchymal stem cells carry and transport clusters of cancer cells

 
 
 
 
 

Abstract


Cell clusters that collectively migrate from primary tumors appear to be far more potent in forming distant metastases than single cancer cells. A better understanding of collective cell migration phenomenon and the involvement of different cell types during this process is needed. Here, we utilize a micropatterned surface composed of a thousand of low-adhesive microwells to screen motility of spheroids containing different cell types by analyzing their ability to move from the bottom to the top of the microwells. Mesenchymal stem cells (MSCs) spheroid migration was efficient in contrast to cancer cell only spheroids. In spheroids with both cell types mixed together, MSCs were able to carry the low-motile cancer cells during migration. As the percentage of MSCs increased in the spheroids, more migrating spheroids were detected. Extracellular vesicles secreted by MSCs also contributed to the pro-migratory effect exerted by MSCs. However, the transport of cancer cells was more efficient when MSCs were physically present in the cluster. Similar results were obtained when cell clusters were encapsulated within a micropatterned hydrogel, where collective migration was guided by micropatterned matrix stiffness. These results suggest that stromal cells facilitate the migration of cancer cell clusters, which is contrary to the general belief that malignant cells metastasize independently. Significance During metastasis, tumor cells may migrate as a cluster, which exhibit higher metastatic capacity compared to single cells. However, whether and how non-cancer cells contained in tumor cluster regulate it’s migration is not clear. Here, we utilize two unique approaches to study collective tumor cell migration in vitro: first, in low-adhesive microwells and second, in micropatterned hydrogels to analyze migration in 3D microenvironment. Our results indicate that MSCs in tumor cell clusters could play an important role in the dissemination of cancer cells by actively transporting low-motile cancer cells. In addition, MSC-released paracrine factors also increase the motility of tumor cells. These findings reveal a new mechanism of cancer cell migration and may lead to new approaches to suppress metastases.

Volume None
Pages None
DOI 10.1101/2021.02.11.430875
Language English
Journal bioRxiv

Full Text