bioRxiv | 2021

Programmed mechano-chemical coupling in reaction-diffusion active matter

 
 
 

Abstract


Embryo morphogenesis involves a complex combination of pattern-forming mechanisms. However, classical in vitro patterning experiments explore only one mechanism at a time, thus missing coupling effects. Here, we conjugate two major pattern-forming mechanisms —reaction-diffusion and active matter— by integrating dissipative DNA/enzyme reaction networks within an active gel composed of cytoskeletal motors and filaments. We show that the strength of the flow generated by the active gel controls the mechano-chemical coupling between the two subsystems. This property was used to engineer a synthetic material where contractions trigger chemical reaction networks both in time and space, thus mimicking key aspects of the polarization mechanism observed in C. elegans oocytes. We anticipate that reaction-diffusion active matter will promote the investigation of mechano-chemical transduction and the design of new materials with life-like properties.

Volume None
Pages None
DOI 10.1101/2021.03.13.435232
Language English
Journal bioRxiv

Full Text