bioRxiv | 2021

Discrete ripples reflect a spectrum of synchronous spiking activity in human association cortex

 
 
 
 
 

Abstract


Direct brain recordings have provided important insights into how persistent oscillatory activity support human memory retrieval, but the extent to which transient fluctuations in intracranial EEG (iEEG) captures the dynamic coordination of underlying neurons involved in memory processing remains unclear. Here, we simultaneously record iEEG, local field potential (LFP), and single unit activity in the human temporal cortex. We demonstrate that cortical ripples contribute to broadband high frequency activity and exhibit a spectrum of amplitudes and durations related to the amount of underlying neuronal spiking. Ripples in the macro-scale iEEG are related to the number and synchrony of ripples in the micro-scale LFP, which in turn are related to the synchrony of neuronal spiking. Our data suggest that neural activity in the human cortex is organized into dynamic, discrete packets of information.

Volume None
Pages None
DOI 10.1101/2021.03.14.435276
Language English
Journal bioRxiv

Full Text