bioRxiv | 2021

The Hippo pathway transcriptional co-activator YAP is involved in head regeneration and bud development in Hydra

 
 
 

Abstract


The Hippo signaling pathway has been shown to be involved in the regulation of cellular identity, cell/tissue size maintenance and mechanotransduction. The Hippo pathway consists of a kinase cascade which determines the nucleo-cytoplasmic localization of YAP in the cell. YAP is the effector protein in the Hippo pathway which acts as a transcriptional cofactor for TEAD. Phosphorylation of YAP upon activation of the Hippo pathway prevents it from entering the nucleus and hence abrogates its function in transcription of target genes. In Cnidaria, the information on the regulatory roles of the Hippo pathway is virtually lacking. Here, we report for the first time the existence of a complete set of Hippo pathway core components in Hydra. By studying their phylogeny and domain organization, we report evolutionary conservation of the components of the Hippo pathway. Protein modelling suggested conservation of YAP-TEAD interaction in Hydra. We also characterized the expression pattern of the homologs of yap, hippo, mob and sav in Hydra using whole mount RNA in situ hybridization and report their possible role in stem cell maintenance. Immunofluorescence assay revealed that Hvul_YAP expressing cells occur in clusters in the body column and are excluded in the terminally differentiated regions. The YAP expressing cells are recruited early during head regeneration and budding implicating the Hippo pathway in early response to injury or establishment of oral fate. These cells exhibit a non-clustered existence at the site of regeneration and budding, indicating the involvement of a new population of YAP expressing cells during oral fate specification. Collectively, we posit that the Hippo pathway is an important signaling system in Hydra, its components are ubiquitously expressed in the Hydra body column, and may play crucial role in Hydra oral fate specification.

Volume None
Pages None
DOI 10.1101/2021.03.24.436861
Language English
Journal bioRxiv

Full Text